Datasheet No. P-029.002.001 (family.genus.species)

1.Taxon:

DBT- Network Programme

Species: Sphenomeris chinensis (L.) Maxon

Subspecies: Variety: Cultivar Hybrid

Image file

2. Synonyms:

Davalliatenuifolia var. lata Hook. ex T. Moore Lindsaeachinensis (L.) Mett. ex Kuhn Microlepiachinensis (L.) Mett. Sphenomerischinensis var. chinensis Stenolomachinense (L.) Bedd.

3.Systematic Position:

Christenhusz 2011

- Class: Equisetopsida C.Agardh
- Subclass: Polypodiidae Cronquist, Takht. & Zimmerm.
- Order: Polypodiales Link.
- Family: Lindsaeaceae C.Presl ex M.R.Schomb.
- Subfamily:
- Genus: Sphenomeris Maxon
- Species: Sphenomeris chinensis (L.) Maxon
- Subspecies:

4.Distribution:

Global: indigenous to Hawai, the Philippines, and other parts of the tropics and sub-tropics.

India: Himalayas (Himachal Pradesh, Darjeeling, Sikkim, Uttarakhand), Central and South India- Pachmarhi, Palni Hills, Kodaikanal, Shambaganur, Ponmudi, UpperKothayarMunnarOotacamund

5.Indigenous/Exotic/Endemic;Cultivated/Wild:

6.Threat Status:

IUCN:

BSI:

7.Habit and Habitat:commonly found in forest openings and disturbed areas such as landslides, along trails or roads. It grows in moist, shady areas from sea level to an elevation of 1200m

9.Economic Importance:Hawaiians made red-brown dye from the old fronds. Pala'ā was used to treat "female ailments". It is made into a lei using the *hili*, or *hilo* technique - a braiding or plaiting method with only one type of plant material. It is also made into *haku* with other plants using the *wili* or winding method and a backing. The <u>Ivatan people</u> of the <u>Batanes</u> islands in the Philippines dry and boil the plant in fresh water until the water turns dark brown to complete black. They consider it as a herbal tea for various health benefits such as better stamina and relief from fatigue

10. Probable Progenitor of:

11.DNA C-value Methodology

12.Basic chromosome number(s): x=47^{6,7,13,15,16,18,19,20}, 48^{9,16}, 50^{1,2,3,4,10,12,17}

13. Zygotic chromosome number(s):2n=94 ^{15, 20}

96⁹, 188^{6,7,13}, c.188¹⁴, c.192⁹, 194⁹, 196⁹, 200^{1,4},

c.200^{2, 10, 12},

c.290^{10, 11, 12}

14. Gametic chromosome number(s):n=47 ^{18, 19, 20},

48⁹,

94^{9,16},

96⁹,

98⁹,

c.100^{1,2},

100 3, 4, 17

15.Specialized chromosomes (B chromosomes/Sex chromosomes/Polytene

chromosomes/Neocentric chromosomes):

Image file

16.Ploidy level:Diploid (sexual) ^{9, 15, 18, 19, 20},

Tetraploid (sexual) ^{1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 17} Hexaploid (sexual) ^{10, 11, 12}

Image file

17.Agametoploidy:

18.Nature of polyploidy (auto, segmental, allo, autoallo):

19.Genomic formula:

20. Aberrant chromosome number(s)(aneuploidy, aneusomaty, polysomaty):

21.Somatic chromosomes:

Karyotype

Chromosome size

NOR chromosome(s)

Degree of asymmetry

Image file

22. Banding pattern(s):

Image file

23.Physical mapping of chromosomes:

In situ hybridization

Image file

Fluorescent in situ hybridization:

Image file

24.Genomic in situ hybridization:

Image file

25. Linkage map:

Image file

Mant

26.Chromosome associations:

Female meiosis

Male meiosis Diploid:47II 18, 19, 20,

48II ⁹

Tetraploid:94II 9, 16,

96II ⁹ ,

9811⁹,

c.100II ^{1, 2, 5},

100II ³, 4, 17

Image file

27.Chromosome distribution at anaphase I:

28. Genetic diversity:

Chromosomal level Image file DNA level

29. Any other information (Apomixis; Inversion; Male sterility; Pollen grain mitosis; Pollen stainability; Translocationsetc.):